Тихонюк И.А., Филатов Ю.В., 2022. Определение значения комплексного коэффициента перебора грунта при щитовой проходке метрополитена. Геотехника, Том ХIV, № 1, с. 30–48, https://doi.org/10.25296/2221-5514-2022-14-1-30-48.
1. Зенько Д.К., Узбекова А.Р., 2004. Основные факторы, влияющие на устойчивость массивов в критериях Бенявского (RMR) и Бартона (Q). Горный информационно-аналитический бюллетень, № 6, c. 273–275.
2. Ильичев В.А., Никифорова Н.С., Готман Ю.А., Тупиков М.М., Трофимов Е.Ю., 2013. Анализ применения активных и пассивных методов защиты существующей застройки при подземном строительстве. Жилищное строительство, № 6, c. 25–27.
3. Исаев О.Н., Шарафутдинов Р.Ф., 2012. Перебор грунта при строительстве коммуникационных тоннелей щитовым способом. Механизация строительства, № 6(816), c. 2–7.
4. Карасев М.А., 2011. Анализ причин деформации земной поверхности и характер формирования мульды оседания, вызванной строительством транспортных тоннелей. Записки Горного института, № 190, с. 163–171.
5. Петрухин В.П., Исаев О.Н., Шарафутдинов Р.Ф., 2014. Геотехнический прогноз при строительстве коммуникационных тоннелей методом щитовой проходки. Вестник НИЦ «Строительство», № 10, с. 114–131.
6. Тер-Мартиросян А.З., Бабушкин Н.Ф., Исаев И.О., Шишкина В.В., 2020. Определение фактического коэффициента перебора грунта путем анализа данных мониторинга. Геотехника, Том VII, № 1, с. 34–42, https://doi.org/10.25296/2221-5514-2020-12-1-6-14.
7. Тер-Мартиросян А.З., Исаев И.О., Алмакаева А.С., 2020. Определение фактического коэффициента перебора (участок «Стахановская улица» — «Нижегородская улица»). Вестник МГСУ, Том 15, № 12, с. 1644–1653, https://doi.org/10.22227/1997-0935.2020.12.1644-1653.
8. Тер-Мартиросян А.З., Кивлюк В.П., Исаев И.О., Шишкина В.В., 2021. Определение фактического коэффициента перебора (участок «Косино» – «Юго-Восточная»). Construction and Geotechnics, Том 12, № 2, с. 5–14, https://doi.org/10.15593/2224-9826/2021.2.01.
9. Ata A.A., 1996. Ground settlements induced by slurry shield tunnelling in stratified soils. Proceedings of the International Conference on North American tunnelling’96 and the 22nd General Assembly of the International tunneling association, Vol. 1, Washington, DC, USA, 1996, pp. 43–50.
10. Barton N., 2007. Rock quality, seismic velocity, attenuation and anisotropy. Taylor and Francis Group, London, UK.
11. Bieniawski Z.T., 1989. Engineering rock massive classifications. Wiley, New York, USA.
12. Cheng H.Z., Chen J., Chen G.L., 2019. Analysis of ground surface settlement induced by a large EPB shield tunnelling: a case study in Beijing, China. Environmental Earth Sciences, Vol. 78, Issue 20, https://doi.org/10.1007/s12665-019-8620-6.
13. Ding Z.D., Ji X.F., Li X.Q., Wen J.C., 2019. Numerical investigation of 3D deformations of existing buildings induced by tunneling. Geotechnical and Geological Engineering, Vol. 37, Issue 4, pp. 2611-2623, https://doi.org/10.1007/s10706-018-00781-1.
14. Fargnoli V., Boldini D., Amorosi A., 2013. TBM tunnelling-induced settlements in coarse-grained soils: the case of the new Milan underground line 5. Tunnelling and Underground Space Technology, Vol. 38, pp. 336–347, https://doi.org/10.1016/j.tust.2013.07.015.
15. Golpasand M.R.B., Nikudel M.R., Uromeihy A., 2016. Specifying the real value of volume loss (VL) and its effect on ground settlement due to excavation of Abuzar tunnel, Tehran. Bulletin of Engineering Geology and the Environment, Vol. 75, Issue 2, pp. 485–501, https://doi.org/10.1007/s10064-015-0788-8.
16. Hu X.Y., He C., Lai X.H., Walton G., Fu W., Fang Y., 2020. A DEM-based study of the disturbance in dry sandy ground caused by EPB shield tunneling. Tunnelling and Underground Space Technology, Vol. 101, ID 103410, https://doi.org/10.1016/j.tust.2020.103410.
17. Li C.Y., Hou S.K., Liu Y.R., Qin P., Yang Q., 2020. Analysis on the crown convergence deformation of surrounding rock for double-shield TBM tunnel based on advance borehole monitoring and inversion analysis. Tunnelling and Underground Space Technology, Vol. 103, ID 103513, https://doi.org/0.1016/j.tust.2020.103513.
18. Litsas D., Sitarenios P., Kavvadas M., 2017. Parametric investigation of tunnelling-induced ground movement due to geometrical and operational TBM complexities. Rivista Italiana Di Geotecnica, Vol. 51, Issue 4, pp. 22–34, https://doi.org/10.19199/2017.4.0557-1405.22.
19. Loganathan N., 2011. An innovative method for assessing tunnelling-induced risks to adjacent structures. Parsons Brinckerhoff Inc., New York, NY, USA.
20.Moh Z-C., Ju D.H., Hwang R.N., 1996. Ground movements around tunnels in soft ground. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London, UK, 1996, pp. 725–730.
21. Möller S.C., 2006. Tunnel induced settlements and structural forces in linings. Publishing house of the University of Stuttgart, Stuttgart, Germany.
22. Nikakhtar L., Zare S., Mirzaei-Nasirabad H., 2020. Numerical modelling of backfill grouting approaches in EPB tunneling. Journal of Mining and Environment, Vol. 11, Issue 1, pp. 301–314, https://doi.org/10.22044/ jme.2020.9155.1805.
23. O’Reilly M.P., Mair R.J., Alderman G.H., 1991. Long-term settlements over tunnels; an eleven-year study at Grimsby. Proceedings of the Conference tunnelling’91, London, UK, 1991, pp. 55–64.
24. Rezaei A.H., Ahmadi-adli M., 2020. The volume loss: real estimation and its effect on surface settlements due to excavation of Tabriz Metro tunnel. Geotechnical and Geological Engineering, Vol. 38, Issue 3, pp. 2663–2684, https://doi.org/10.1007/s10706-019-01177-5.
25. Rezaei A.H., Shirzehhagh M., Golpasand M.R.B., 2019. EPB tunneling in cohesionless soils: a study on Tabriz Metro settlements. Geomechanics and Engineering, Vol. 19, Issue 2, pp. 153–165, https://doi.org/10.12989/gae.2019.19.2.153.
26. Rispoli A., Ferrero A.M., Cardu M., 2020. From exploratory tunnel to base tunnel: hard rock TBM performance prediction by means of a Stochastic approach. Rock Mechanics and Rock Engineering, Vol. 53, Issue 12, pp. 5473–5487, https://doi.org/10.1007/s00603-020-02226-9.
27. Sun X.M., Ren C., Yuan J.C., Du J., Guo B., 2020. The analysis of time-space effect of surrounding rock deformation of TBM tunnels in deep composite stratum with or without support. Advances in Civil Engineering, Vol. 2020, ID 5494192, https://doi.org/10.1155/2020/5494192.
28. Vittorio G., Piergiorgio G., Ashraf M., Shulin X. (eds), 2007. Mechanized tunnelling in urban areas. Design methodology and construction control. Taylor and Francis Group, London, UK.
29. Zhang C.P., Cai Y., Zhu W.J., 2019. Numerical study and field monitoring of the ground deformation induced by large slurry shield tunnelling in sandy cobble ground. Advances in Civil Engineering, Vol. 2019, ID 4145721, https://doi.org/10.1155/2019/4145721.
30. Zhang M., Li S., Li P., 2020. Numerical analysis of ground displacement and segmental stress and influence of yaw excavation loadings for a curved shield tunnel. Computers and Geotechnics, Vol. 118, ID 103325, https://doi.org/10.1016/j.compgeo.2019.103325.